- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Arpaci-Dusseau, Andrea (2)
-
Arpaci-Dusseau, Remzi (2)
-
Patel, Yuvraj (2)
-
Alagappan, Ramnatthan (1)
-
Arulraj, Leo (1)
-
Rebello, Anthony (1)
-
Swift, Michael (1)
-
Yang, Leon (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We introduce the scheduler subversion problem, where lock usage patterns determine which thread runs, thereby subverting CPU scheduling goals. To mitigate this problem, we introduce Scheduler-Cooperative Locks (SCLs), a new family of locking primitives that controls lock usage and thus aligns with system-wide scheduling goals; our initial work focuses on proportional share schedulers. Unlike existing locks, SCLs provide an equal (or proportional) time window called lock opportunity within which each thread can acquire the lock. We design and implement three different scheduler-cooperative locks that work well with proportional-share schedulers: a user-level mutex lock (u-SCL), a reader-writer lock (RWSCL), and a simplified kernel implementation (k-SCL). We demonstrate the effectiveness of SCLs in two user-space applications (UpScaleDB and KyotoCabinet) and the Linux kernel. In all three cases, regardless of lock usage patterns, SCLs ensure that each thread receives proportional lock allocations that match those of the CPU scheduler. Using microbenchmarks, we show that SCLs are efficient and achieve high performance with minimal overhead under extreme workloads.more » « less
-
Rebello, Anthony; Patel, Yuvraj; Alagappan, Ramnatthan; Arpaci-Dusseau, Andrea; Arpaci-Dusseau, Remzi (, The 2020 USENIX Annual Technical Conference (USENIX ATC '20))We analyze how file systems and modern data-intensive applications react to fsync failures. First, we characterize how three Linux file systems (ext4, XFS, Btrfs) behave in the presence of failures. We find commonalities across file systems (pages are always marked clean, certain block writes always lead to unavailability), as well as differences (page content and failure reporting is varied). Next, we study how five widely used applications (PostgreSQL, LMDB, LevelDB, SQLite, Redis) handle fsync failures. Our findings show that although applications use many failure-handling strategies, none are sufficient: fsync failures can cause catastrophic outcomes such as data loss and corruption. Our findings have strong implications for the design of file systems and applications that intend to provide strong durability guarantees.more » « less
An official website of the United States government

Full Text Available